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Statistics of Stretching Fields in Experimental Fluid
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Stretching fields and their statistical properties are studied experimentally for
four distinct two-dimensional time-periodic confined fluid flows exhibiting cha-
otic advection: a random vortex array for two different Reynolds numbers, a
set of parallel shear layers, and a vortex lattice. The flows are driven electro-
magnetically, and they are studied by means of precise particle velocimetry. We
find that for a given flow, the probability distributions of log S (where S is the
local stretching in N cycles) can be nearly superimposed for different N when
log S is rescaled using the geometrical mean of the stretching distribution. The
rescaled stretching fields for a given flow at various N are highly correlated
spatially when N is large. Finally, the scaled distributions for different flows are
similar, though there are some differences connected to the degree of spatial
symmetry and time-reversibility of the flows.
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1. INTRODUCTION

Fluid mixing is an important phenomenon in fundamental statistical
mechanics, and also occurs in diverse natural situations. Examples
include atmospheric mixing, which influences environmental chemistry and
weather,(1) and convective mixing within the lungs, which is responsible for
gas transport to alveolar surfaces.(2) The first step in mixing (or homog-
enization of a passive impurity) is the stretching of fluid elements into
elongated striations. This fact was recognized by Batchelor,(3) who first dem-
onstrated qualitatively that material lines and surfaces are stretched expo-
nentially in homogeneous, isotropic turbulent flows. However, exponential
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stretching of material elements also occurs in flows exhibiting “chaotic
advection”,(4) in which even time-periodic two-dimensional velocity fields
can create complex distributions of an advected field. In this paper, we
measure the statistical properties the stretching fields produced by such
time-periodic flows.

One of the key properties of flows exhibiting chaotic advection is the
exponential divergence of nearby trajectories in real space, usually charac-
terized by the largest local finite time Lyapunov exponent λ over a time
interval �t (measured in periods). If one imagines the deformation of an
infinitesimal circular fluid element located initially at (x, y), the stretching
S is defined as the ratio of the final major diameter (after �t) to the ini-
tial diameter. Then λ = (log S)/�t . Stretching in these flows is far from
uniform;(5–7) it is typically a strong function of space. We refer to this
spatially varying function as a “stretching field” S(x, y). For time-periodic
flows, the stretching field is also a function of phase, but it is typically
sufficient to focus attention on a single phase. The statistical properties
of S(x, y) or λ(x, y) strongly affect fluid mixing rates,(8,9) and the fractal
properties of scalar gradients.(10,11)

Several aspects of the probability distributions of S or λ have been
explored numerically in chaotic flows. For example, Ottino et al.(5) showed
that the stretching distributions HN(log S) for various numbers N of cycles
exhibit self-similar behavior; the distributions for all N can be superim-
posed when S is plotted as a rescaled variable z = (log S)/(log Sg), where
Sg is the geometrical mean stretching (see Eq. 1). This self-similar behavior
is found numerically in different types of 2D chaotic flows, ranging from
flows that are chaotic everywhere, to others whose Poincaré maps show
regular elliptic islands.(12) The distributions converge to different asymp-
totic forms for flows with and without islands.(13) Self-similarity of stretch-
ing distributions is also reported for other types of flows exhibiting cha-
otic behavior, including models of atmospheric and ocean flows,(14,15) and
certain chaotic maps.(6,16) In addition, other results indicate that the first
moment of the rescaled distribution converges with increasing time(12,17)

and that the variance of the distribution grows as a linear function of time
(or N ), although an intermediate power-law scaling may occur.(18) Authors
differ on the distribution function characterizing stretching values. Some
investigations show that the asymptotic distribution can be Gaussian(5,6)

for fully chaotic flows while other earlier works(10,11) demonstrate that
the distribution of Lyapunov exponents is not necessarily Gaussian. Other
aspects of the stretching distributions have also been studied, such as
the properties of the high-stretch tail(19) that are often encountered in
fully chaotic flows, and the multifractal characteristics that are sometimes
noted.(20)
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Most investigations of stretching statistics have been restricted to
numerical simulations, because of the difficulty of measuring stretching
fields in experimental flows. Recently, however, Voth et al.(7) demonstrated
that it is possible to obtain accurate stretching fields from high spa-
tial resolution velocity fields in time-periodic flows. Therefore, it is now
possible to consider the statistical properties of stretching distributions
experimentally.

In this paper, we determine the statistics of stretching for four quite
different 2D time-periodic velocity fields that exhibit chaotic mixing, using
the methods reported by Voth et al.(7) All of the flows are created by mag-
netohydrodynamic forcing of a conducting fluid. The velocity fields have
different degrees of symmetry, and regular (non-mixing) regions occur to a
different extent in the various flows. We examine the scaling properties of
the stretching distributions of these flows, and compare the distributions
with each other.

2. EXPERIMENTS

We investigate mixing in an electromagnetically driven fluid layer
(Fig. 1) as explained in ref. 9. A time-periodic current travels horizontally
through a conducting fluid layer that is placed above an array of per-
manent magnets. The resulting Lorenz forces drive a time-periodic vor-
tex flow that may be spatially ordered or disordered depending on the
arrangement of the forcing magnets. The area of fluid flow is 15 × 15 cm,
and all figures in this paper show a central 10×10 cm region. The forcing
frequencies used in this investigation are 100 mHz and 68 mHz, and typi-
cal velocities are 0.01–0.7 cm/s. The fluids used in this investigation are a

Fig. 1. Schematic diagram of the apparatus for producing two-dimensional, time-periodic
flows by passing an AC current through a conductive fluid in the presence of a structured
magnetic field. The fluid is comprised of two layers as indicated in the text.
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20% and a 50% aqueous solution of glycerol. The 20% glycerol solution
has a fluid viscosity η of 1.74 cP and a fluid density ρ of 1.1 g/cm3 and
it is used for the higher Reynolds number experiments. The 50% solution
(η = 6.67 cP, ρ = 1.15 g/cm3) is used for the low Re flow. The fluids are
made conductive by adding KCl salt, 5% by weight. Experiments are per-
formed using two fluid layers. The bottom layer is denser and conductive,
and it is about 3 mm in thickness. The upper layer is not conductive (no
salt added) and it is 1 mm thick. The flow is essentially two-dimensional.

Particle tracking experiments are performed by seeding the fluid with
fluorescent polystyrene spheres 120 �m in diameter. The fluorescent parti-
cles are placed at the interface of the two fluid layers. Usually, 600–800
particles are imaged in a single frame. We record up to 8000 images using
a CCD camera (512×512) at 8 Hz in a typical run, or 80–100 images per
period. The centroid of each particle is found with a precision of 40 �m.
Particles found in sequential images are then labeled and combined into
tracks. These tracks are then used to obtain velocity fields and to con-
struct Poincaré maps. Because the flow is periodic, we can combine par-
ticle positions obtained at a given phase (relative to the forcing) to obtain
up to 80,000 precise particle positions at each phase and thereby obtain
very high spatial resolution (0.004 of the field of view), excellent time res-
olution (0.01 and 0.007 of a flow period for the 100 mHz and the 68 mHz
cases, respectively) and velocities accurate to a few percent.

The process of extracting stretching fields begins by using polynomial
fitting to determine particle velocities, which are then interpolated onto a
grid. To measure stretching, we determine the flow map �x′ = �Φ(�x, t0,�t ),
which is a function that specifies the destination vector �x′ at time t0 +
�t of any fluid particle starting from �x at time t0. Flow maps are con-
structed by integrating hypothetical particle trajectories numerically using
the velocity grids. These maps determine the final positions of particles
as a function of their initial positions. Because the flow is periodic, �Φ
becomes the Poincaré map of the flow when �t equal to one period.
The stretching S experienced by a fluid element is determined by the gra-
dients of the flow map. More precisely, it is defined as the square root
of the largest eigenvalue of the right Cauchy–Green strain tensor, Cij , at
the location of interest: Cij = (∂Φk/∂xi)(∂Φk/∂xj ), where the summation
is implied over the repeated index k = 1, 2. It would also be possible
to determine stretching from particle trajectory data. However, it is less
accurate(7) than the method presented here.

Two different quantities are computed at each point, which we call
future and past stretching. Future stretching is the stretching experienced
by a fluid element in the next �t . Past stretching is the stretching that a
fluid element experienced in the previous �t . These quantities, past and
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future stretching, tend to be large on the unstable and stable manifolds
of the hyperbolic fixed points of the Poincaré map, respectively. Further
detail on the velocimetry measurements and stretching calculations may be
found elsewhere.(7)

There are two independent dimensionless parameters for our flows.
The Reynolds number, Re = ρUL/η, is based on the mean magnet spac-
ing L= 2 cm, RMS velocity U , fluid density ρ, and fluid viscosity η. The
path length, p = U/Lf , where f is the driving frequency of the flow,
describes the mean displacement of a typical fluid element in one forc-
ing period (1/f ) normalized by L. In this paper, we investigate flows
with different dynamical features, and different degrees of spatial symme-
try and time-reversibility. Flows with spatial and temporal symmetry are
known to possess non-mixing regions.(21) Spatial symmetry is explored by
using different magnetic arrays: a random array of magnets, which pro-
duces a flow with no symmetry; a square lattice magnet array that pro-
duces a flow with reflection and discrete translation symmetry along the
coordinate axes; and a hexagonal lattice magnet array that produces a set
of parallel shear layers. The role of time reversibility on the statistics of
stretching is explored by using a flow with little spatial symmetry (random
array case) investigated both at Re=65 (p=2.5) and at Re=4.5 (p=1.0).
The velocity field of the Re = 4.5 case departs less from time-reversibility
than does the Re = 65 case,(9) and therefore shows significant non-mixing
regions (regular islands).

3. EXPERIMENTAL RESULTS

3.1. Velocity Fields and Stretching Fields

The various flow patterns investigated in this work are shown in
Fig. 2 by means of particle pathlines lasting 4 s. The vortex flows pro-
duced by random magnet arrays are shown in (a) and (b). The first case
(Re = 65, p = 2.5) is for an elevated Reynolds number and large path
length per cycle, while the second is for a more weakly chaotic case (Re=
4.5, p =1.0). In (a), the chaotic sea includes most of the spatial domain,
whereas in (b), there are significant non-mixing regions as a result of
smaller departures from time-reversibility of the velocity field. However,
these regular regions are not visible in the pathline patterns, because the
elapsed time is too short.

In Fig. 2(c) we see an ordered vortex pattern produced by a square
lattice magnet array. We examine this case because the high spatial sym-
metry tends to inhibit mixing, as shown in previous work of Voth et al.(9)
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Fig. 2. Path-lines lasting 4 s for (a) a strongly chaotic flow produced by a random magnet
array (Re=65, p=2.5); (b) a weakly chaotic flow with non-mixing regions, produced the same
array at lower Re (Re=4.5, p=1.0); (c) an ordered vortex pattern produced by a square lattice
magnet array (Re=65, p =2.5); and (d) multiple shear layers (Re=65, p =2.5) produced by
a hexagonal lattice magnet array.

Finally, Fig. 2(d) shows a parallel shear flow with multiple shear layers
produced by a hexagonal lattice magnet array. In (c) and (d) precisely half
the magnets have their north poles pointing vertically upward. The mea-
sured instantaneous velocity fields in these four cases are given in Fig.
3. These flows are representative of the various flow patterns that can be
achieved in a closed (bounded) two-dimensional domain.

Chaotic mixing for these flows depends on the relatively small lack
of time-reversibility that occurs as a result of the finite value of Re. This
property is evident by looking at Poincaré maps, as shown in Fig. 4. The
particle displacements are generally largest for the high Re “random” vor-
tex flow, as a consequence of both the large Re and the lack of symmetry.
In (b) there are significant empty regions, which are probably non-mixing
regions around elliptic fixed points of the Poincaré maps. Particles inside
these regions cannot leave, and particles outside cannot enter them. In
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Fig. 3. (Color online) Instantaneous velocity fields for the four flows shown in Fig. 2. Both
color coding and arrow lengths are used to show the magnitude and direction of the velocity.

(c) the regions of large displacement are localized around the stagnation
(hyperbolic) points of the ordered array of vortices. Finally, in (d) it is
interesting to note that the largest displacements after a full cycle are not
strictly parallel to the local shear velocity. We do not know why this is the
case, but it could be due to large scale convective motion.

Future and past stretching fields for the four flows are shown in
Fig. 5. They are quite different from each other. The strongest stretch-
ing occurs for (a), as expected from the large particle displacements or
large departure from time reversibility of this flow. The stretching field
is weak in (b) as a result of the near time-reversibility of the veloc-
ity field, even though the spatial structure is similar to that in (a). In
the regular array (c), it is particularly clear that the stretching is highly
inhomogeneous, being much larger along lines passing through stagnation
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Fig. 4. (Color online) Poincaré Maps of the flows shown in Fig. 2. Lines are drawn
between the initial and final positions of particles one period apart. Color is also used
online, with red indicating the largest displacements scaled by the maximum displacement
(ξ) of each flow. (a) Random array (Re = 65, p = 2.5, ξ = 1.2 cm); (b) random array
(Re = 4.5, p = 1.0, ξ = 0.48 cm); (c) regular array (Re = 65, p = 2.5, ξ = 0.75 cm); and shear
layer (Re=65, p =2.5, ξ =0.75 cm).

(hyperbolic) points of the flow than in other regions, by a factor of 1000
or more. The stretching field is (d) is highly inhomogeneous but devoid of
lines of high stretching as in (c) since there are few hyperbolic points in
the flow.

3.2. Statistics of the Stretching Fields

As explained in Section 1, previous analysis and numerical work sug-
gests that stretching fields should have similar structure for different num-
bers of periods. We test this expectation qualitatively in Fig. 6 for the
low Re random array of Fig. 2(b) or 3(b). We note that stretching field
possesses strong spatial heterogeneity. However, except for the magnitude
of stretching values, which increases with N , the fields are similar. (We
quantify this statement in the following discussion.)
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Fig. 5. (Color online) Lines of future and past stretching fields for the four flows of Fig. 2
computed over one period of the dynamics. In the color version, red is used for future
stretching, and blue is used for past stretching. The four flows produce quite different stretch-
ing fields. The dynamical range of these measurements is at least 5 orders of magnitude.

The statistical distributions of the stretching are shown in Fig. 7.
Because the logarithm of the stretching is proportional to the distribution
of finite time Lyapunov exponents, we actually plot the probability den-
sity function (PDF) of log S, rather than the PDF of S itself. The PDF
of log S is defined as H(log S)=dn(log S)/d(log S), where dn(log S) is the
number of points with values of log S between log S and log S + d(log S).
It may be seen that for all of the flows, the distributions are peaked, and
they become wider as the number of cycles N over which they are com-
puted increases. The mode of the distribution also increases with N .

Next, we explore the scaling properties of these distributions by
rescaling the logarithm of the stretching values by the logarithm of the
geometrical mean of the stretching (Sg). The logarithm of the geometric
mean stretching is equivalent to the arithmetic mean of log S

log Sg =
∫
(log S)H(log S)d log S

∫
H(log S)d log S

. (1)
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Fig. 6. (Color online) Evolution of the future stretching field as a function of the number
of periods N over which it is computed, for the low Re random array of Fig. 2(b) or 3(b).
Except for the magnitude of stretching, which increases with N , the fields are similar.

The results for the distribution of the rescaled stretching values are dis-
played in Fig. 8., where we introduce a variable z = (log S)/(log Sg). This
quantity z is equivalent to (log S)/(〈λ〉�t), where 〈λ〉 is the average finite
time Lyapunov exponent. It may be seen that there is a substantial degree
of collapse of the distributions for each of the flows, although it is not per-
fect. In Fig. 8(b), the rescaled stretching distributions are nearly identical
for large N , as one might expect. For the other cases (Fig. 8a–d), the col-
lapse is not as complete. Note that the frequency of occurrence of S =1 or
log S =0 (i.e. no stretching) is non-zero; this indicates that some regions of
these flows are not chaotic, at least for flows (b, c, and d). We find that the
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Fig. 7. (Color online) Probability density function of the logarithm of the future stretching
S, computed over various numbers of cycles N , for each of the flows of Figs. 2 and 3: N =1
(black), 2 (blue), 3 (green), and 6 (red). All of the distributions have similar peaked shapes
and become wider for large N .

distributions are not lognormal. There are enhanced tails on the high end
part of the rescaled stretching distribution for all flows, rendering the dis-
tributions asymmetric. These high end tails correspond to narrow regions
of strong stretching that can be important in the mixing of passive scalars.

In Fig. 9, we compare the rescaled log stretching fields themselves
for different N , for the random array flow. Both the high and low Re
cases are shown. It may be seen that the rescaled log stretching fields are
not strongly dependent on N . However, there is some visible difference
between N =2,3 for the high Re case.

We quantify the similarity between the rescaled stretching fields by
computing the cross correlation coefficients between the scaled log S(x, y)

fields for various N with those for N − 1. As we show in Fig. 10, the
fields become more correlated for all of the flows as N increases, indicat-
ing that the normalized stretching distributions are converging. This result
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Fig. 8. (Color online) Probability density function of the rescaled logarithm of future
stretching H(z), where z = (log S)/ log Sg) for the various flows of Figs. 2 and 3: N = 1
(black), 2 (blue), 3 (green), and 6 (red). There is a substantial degree of collapse of the
distributions.

can also be observed visually in Fig. 9, where the normalized stretching
fields appear to be quite similar, especially at large N .

The geometric mean stretching is expected to grow exponentially
with the number N of cycles as Sg = Ae〈λ〉N , where A is an exponential
pre-factor. This hypothesis is tested in Fig. 11, and seems to be consistent
with the data, though the evidence is strongest for the high Re random
array case.

The scaled distributions for the various flows considered in this paper
are compared in Fig. 12. They are quite similar; all of the log S distribu-
tions have a peak, followed by a roughly linear tail in log S. Equivalently,
the probability P(S) is approximately a power law function of S for large S.

We compare these experimental results with the existing numerical
studies in the following section.
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Fig. 9. (Color online) Logarithmic stretching fields, scaled by the logarithm of the geomet-
rical mean stretching, for various numbers N of cycles. Left row: random array, for Re=4.5
and p=1.0. Right row: same flow under more strongly chaotic conditions (Re=65, p=2.5).
The normalized fields are not strongly dependent on N .
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4. DISCUSSION AND CONCLUSION

In this paper, we discuss the statistics of experimentally measured
stretching fields in four different time periodic fluid flows as shown in
Figs. 2–5. We selected these flows to explore the role of spatial symmetry,
temporal reversibility, and flow dynamics on the behavior of stretching
distributions. We experimentally test the hypothesis, previously studied
numerically, that stretching fields measured over various numbers of peri-
ods should have the same geometrical structure, and should be identical
when suitably rescaled. We find these expectations to be generally borne
out for the experiments reported here, as indicated in Figs. 6, 8, and 9.

The distributions of log S (Figs. 7 or 8) show that the stretching is
always highly inhomogeneous, and that there are significant regions of low
stretching for some flows even over six periods, as shown in Fig. 7(b–d).
These are flows with high spatial and temporal symmetry where signifi-
cant non-chaotic regions are present. For such flows, we find that the
distributions of log S are strongly non-Gaussian. This is in accordance
with previous work on 2D incompressible chaotic flows.(10,11) We find that
visible non-Gaussian behavior occurs even for flows where regular islands
are relatively small (about 7% of the domain), as in Fig. 7(a). Our high
Re random array flow comes closer to showing a Gaussian stretching
distribution, though it is still asymmetric even at N = 6. This remaining
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asymmetry may be contrasted with some numerical investigations of 2D
globally chaotic flows, where the distribution of log S was found to be
nearly Gaussian at large N.(5,6)

In this investigation, we rescale the log stretching values by the loga-
rithm of the geometrical mean stretching, which grows linearly in time. As
explained in ref. 5, the self-similar behavior of the probability distribution
H(log S) is expected to emerge when stretching is scaled in this way. This
seems to be the case approximately (but not perfectly) for all of the flows
we investigated experimentally, as shown in Fig. 8. In general, for all
flows, the rescaled stretching distribution is not lognormal. The distribu-
tions show enhanced tails on the high end, rendering them asymmetric.

We find that the data collapse of H(z), where z = (log S)/(log Sg),
improves with N . This observation is in agreement with previous work(17)

on nonlinear mappings, in which (log S)/�t is observed to converge point-
wise at almost all positions as time (or N ) increases. This is also an
expectation from large deviation theory.(22) Of course, initial anomalies are
expected at early times. Note that both scalings are equivalent, (log S)/�t

and (log S)/(log Sg), since (log Sg) is approximately a linear function of
N . We also find that the rescaled log stretching fields themselves become
very similar at larger N. This similarity is quantified by calculating the
cross correlation coefficient of the normalized field at time N with that
for N −1. As shown in Fig. 10, the rescaled stretching fields for all of the
flows are highly correlated at large N .

As we show in Fig. 11, Sg grows exponentially with N for the ran-
dom array case at Re=65 (p =2.5), with A=5.9 and 〈λ〉=2.1. The con-
straint imposed by spatial symmetry on the velocity field and consequently
on chaotic motion becomes apparent in the lower value of 〈λ〉= 0.35 for
the regular array case at Re = 65 (p = 2.5). In this flow the spatial lines
of reflection symmetry create many regions of non-chaotic flow. A lower
growth rate of stretching with N is also observed for the shear layer flow
(Re = 65, p = 2.5, 〈λ〉= 0.2) which also has lines of reflection symmetry,
though only along one axis. Next we examine the random array case at a
lower speed and path length (Re = 4.5, p = 1.0). This flow has a smaller
measured violation of temporal reversibility than does the same flow at
higher Re, and the geometric mean stretching grows at a much smaller
rate (〈λ〉= 0.18). In fact, the slow growth of the geometric mean suggests
the existence of large regular regions in the flow.

Note that the particle motion described in this paper is analogous to
the phase space behavior of a Hamiltonian dynamical system, and there-
fore may show both regular and chaotic regions. However, the degree of
departure from time-reversibility, which is affected by inertia (i.e., Re),
determines the spatial extent of the regular regions. For small Re, there are
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large regular regions where particles are locally subjected to linear, instead
of exponential, growth of small displacements.

Remarkably, the normalized distributions for the various flows are
very similar, despite the fact that the flows have quite different character-
istics such as magnet arrangements and values of Re and p. In fact, one
may a priori expect different distributions for different flows. The similarity
of the scaled distributions for different flows remains to be explained. One
possible source of asymmetry might be an enhancement of low stretching
values due to particles spending more time near regular islands, as dis-
cussed by ref. 23. However, our distributions appear to be enhanced on the
high side.
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